

STATISTICS STUDY PROGRAM

Version/Revision

Page

Semester Teaching Plan

2/1

1/5

1.Course Identity				
Course name (Nama mata kuliah)	Statistical Computing			
Faculty (<i>Fakultas</i>)	Mathematics and Natural Science	Study Program (Program Studi)	Statistics	
Code (Kode)	SST-606	Credit poin Sks (<i>Bobot Sk</i> s)	2	
Group (Grup)	Study Program	Enrollment obligatory (Sifat pengambilan)	mandatory/ optional *	
Semester(s) in which the course is taught (Semester)	6	Availability (Ketersediaan)	Limited	
Learning method (Bentuk pembelajaran)	blended learning/ online learning*	Media (<i>Media</i>)	Digital files (slides, video, sheet, etc)	
Course category (Rumpun mata kuliah/blok)	university compulsory course/ SSP compulsory course/ practicum/ compulsory of scientific interest/ elective course*	Requirements (Prasyarat)	Database	
Lecture (Dosen pengampu)	Dina Tri Utari, M.Sc. Rahmadi Yotenka, M.Sc.	Semester/ Academic year (Semester/ Tahun Akademik)	Even Semester 2020/2021	

*) cross the unnecessary ones

2a. PROGRAM LEARNING OUTCOME (CAPAIAN PEMBELAJARAN LULUSAN)				
LO Code (<i>Kode CPL</i>)	LO Description (Rumusan CPL)			
PPa (Intelligence)	Mastering the concepts of probability theory and statistics, mathematics, calculus,			
(intelligence)	programming.			
PPb	Mastering several statistical methodologies (methods and models) to be used in solving			
(Science)	problems in several fields.			
PPc	Mastering at least two statistical software, including software based on open source.			
(Software)				
Kka	Able to design experiments, including the collection and generation of data (in the form of			
(Technique)	surveys, experiments or simulations), organizing the data, analysis of the data using			
	statistics techniques and the extraction of valid conclusions by utilizing a minimum of one			
	device type of software statistics			
Kkb	Able to solve the problem of estimation, hypothesis testing, prediction and forecasting in			
(Communicative)	several fields, using data and several statistical methodologies (methods and models) and			
	presenting them in the form of descriptions that are easily understood by users.			

2b. COURSE OUTCOME (CAPAIAN PEMBELAJARAN MATA KULIAH)						
Suppor ted PLO Code (<i>Kode</i>	CO Code (<i>Kode</i> <i>CPMK</i>)	CO Descriptions and Indicators (Rumusan CPMK dan Indikator)	Learning Experience (Pengalaman Pembelajaran)	Assessment (Asesmen/penilaian)	Wei ght (<i>Bo</i> - bot)	

CPL yang didu-						
PPa	PPa1	Students are able to use operators in R and create functions according to the commands given without and with pipe operator.	1.	Students are able to use operators that are already available in R correctly. Students are able to create functions to solve a problem without and with pipe operators .	Assignment	10
PPb	PPb1	Students are able to use statistical functions in R to solve statistical problems according to the type of data given .	1.	Students are able to choose and use statistical functions that are already available in R to solve problems related to qualitative and quantitative data correctly.	Assignment	10
PPc	PPc1	Students are able to explain data structures in R and perform operations on them.	1.	Students are able to explain the data structure in R and the operations in it.	Quiz	5
ККа	KKa1	Students are able to generate random numbers of certain statistical distributions in R for estimate parameter using MLE.	1. 2.	Students are able to generate random numbers based on statistical distributions. Students are able to make parameter estimation functions using the MLE method in R.	Assignment	10
	ККа2	Students are able to create an RShiny application based on a website display based on commands that have been made in R.	1. 2.	Students are able to create functions for data analysis in R. Students are able to create a function to convert the results in R into an RShiny application based on a website display.	Assignment, Final Exam	35
ККЬ	KKb1	Students are able to analyze and create data visualizations in R using the ggplot2 package.	1. 2.	Students are able to use functions and analyze data in R. Students are able to make visualizations of the results of data analysis using R package ggplot2.	Midterm Exam	30

3. Program Learning Outcome Analysis Map (Peta Analisis Capaian Pembelajaran)

4. Reference (Referensi)

Braun, W. J., & Murdoch, D. J. (2007). A First Course in Statistical Programming with R. Cambridge: Cambridge University Press. Kabacoff, R. (2018). Data Visualization with R. Middletown: Wesleyan University.

Venables, W. N. (2009). An Introduction to R, Notes on R: A Programming Environment for Data Analysis and Graphics. -: etwork Theory Ltd.

Wickham, H. (2020). Mastering Shiny. California: O'Reilly Media.

Utari, D. T. (2021). Komputasi Statistika dengan R. Yogyakarta: Universitas Islam Indonesia.

5. Deta	5. Detail of Learning Activities (<i>Rincian Aktivitas Pembelajaran</i>)					
Sessio n (sesi)	LOC/Sub- LOC/Criterio n (CPMK/Sub- CPMK/ Kriteria)	Study Material (<i>Bahan Kajian</i>)	Activity Design and Duration (Rancangan Aktivitas dan Durasi)	Mode	Learning Media/ Reference (Media Pembelajaran/ Referensi)	
1.	PPc1	Data Structure in R	 Lecture gives quiz for knowing students' knowledge about data structures (10 minutes) Lecture explains data structure in R (duration 30-45 minutes); Students do example and task for each data structure (duration 45-60 minutes) 	FFO	Slides 1 Quiz 1: knowledge of data stucture	
2.	PPb1	Basic Statistics in R (qualitative data)	 Lecturer explains briefly the theory of method to solve qualitative data (30 minutes) Lecturer gives the problem and students solved using the theory that has been explained (70 minutes) 	FFO	Slides 2	

3.	PPb1	Basic Statistics in R (quantitative data)	 Lecturer explains briefly the theory of method to solve quantitative data (30 minutes) Lecturer gives the problem and students solved using the theory that has been explained (70 minutes) Lecture explains the structure and types 	FFO FFO	Slide 3 Assignment 2: solve problems of qualitative and quantitative data using appropriate method Slide 4
4.	PPa1	Function	 of function Lecturer gives the problem and students solved using the theory that has been explained 		
5.	PPa1	Pipe Operator	 Lecture explains how to create function using pipe operators Lecturer gives the problem and students solved using the theory that has been explained 	FFO	Slide 5 Assignment 1: create function with and without pipe operator
6.	KKb1	Data Visualization Part 1	 Lecture provides a trigger of data visualization Student follow the tutorial part 1 of using ggplot2 package 	SSA	Lecture's book
7.	KKb1	Data Visualization Part 2	 Lecture provides a trigger of data visualization Student follow the tutorial part 2 of using ggplot2 package 	SSA	Lecture's book
8.		Midterm Exam			
9.	KKa1	MLE in R Part 1	 Lecture explains briefly the theory of MLE Lecture and students solve the problem of estimation parameter using MLE in R 	FFO	Slide 8
10.	KKa1	MLE in R Part 2	 Lecture and students solve the problem of estimation parameter using MLE in R (based on data) 	FFO	Slide 9
11.	PPa1, KKa1	Numerical Analysis	 Lecture provides a trigger of numerical analysis Student follow the tutorial of estimate parameter using Newton Raphson method 	SAA	Lecture's book Assignment 3: Estimation parameter of Gamma distribution
12.	ККа2	R Shiny	 Lecture explains an introduction of R Shiny 	FFO	Slide 10
13.	ККа2	R Shiny	 Lecture explains how to create UI/user interface in R Shiny and followed by students 	FFO	Slide 11
14.	KKa2	R Shiny	- Lecture explains how to create server in R Shiny and followed by students	FFO	Slide 12
			- Students create simple R Shiny	SAA	Slide 11-12
15.	ККа2	R Shiny	application		Shiny application

Information:

For mode, enter one of the following codes

• FF = activities that require **face-to-face** meetings in class (*aktivitas yang memerlukan tatap muka (TM) langsung di kelas*);

• FFO = activities that require **face to face online** (*aktivitas yang memerlukan tatap muka secara daring (tatap maya/TMD)*);

- SAA = standalone asynchronous online activity (aktivitas daring asinkron mandiri/ASM);
- CAA = collaborative asynchronous online activities (aktivitas daring asinkron kolaborasi/ASK);

Learning / reference media can be in the form of (1) self-produced results, (2) curated results: media sourced from the internet or other sources chosen by the lecturer, and / or (3) students' own exploration results.

6. Assessment and Evaluation System (Sistem Penilaian dan Evaluasi)				
Assessment System (Sistem Penilaian)	 The grading system uses one of these two systems: PAP (<i>Penilaian Acuan Patokan</i>/ Benchmark Reference Assessment) is an assessment using the University / Faculty / Study Program's standard values. PAN (<i>Penilaian Acuan Normal</i>/ Normal Reference Assessment) is an assessment based on relative class passing standards, for example based on a normal distribution. 			
Evaluation System (Sistem Evaluasi)	Evaluation is a decision taken after students finish lectures. Each student must achieve a minimum grade / predicate of C for the overall average score. If it has not fulfilled it, then the student is obliged to carry out an examination / repair assignment.			

Date:	Date:	Date:
Validated by	Examined by	Prepared by
(Disyahkan oleh)	(Diperiksa oleh)	(Disiapkan oleh) 👝
	Ann were	
\sim	/m ····	
	2	
Dr. Edy Widodo, M.Si.	Muhammad Muhájir, M.Sc.	Dina Tri Utari, M.Sc.