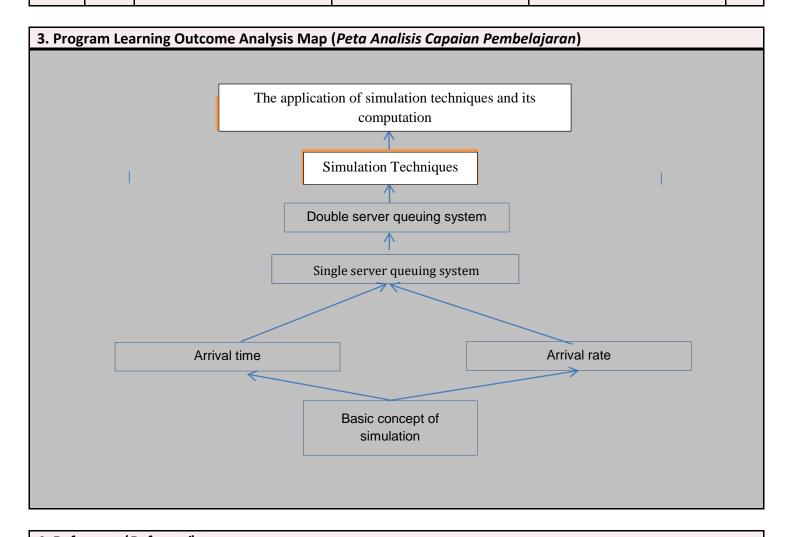


STATISTICS STUDY PROGRAM

Semester Teaching Plan

Version/Revision 2/1 Page 1/4


1.Course Identity					
Course name (Nama mata kuliah)	Simulation Techniques				
Faculty (Fakultas)	Science and Mathematics	Study Program (Program Studi)	Statistics		
Code (Kode)	SST-309	Credit poin Sks (Bobot Sks)	3		
Group (<i>Grup</i>)	Study Program	Enrollment obligatory (Sifat pengambilan)	mandatory/ optional*		
Semester(s) in which the course is taught (Semester)	III	Availability (Ketersediaan)	Only available on Statistics Study Program		
Learning method (Bentuk pembelajaran)	blended learning/ online learning*	Media (<i>Media</i>)	Zoom, Google Classroom, and Video		
Course category (Rumpun mata kuliah/blok)	university compulsory course/ SSP compulsory course/ practicum/ compulsory of scientific interest/ elective course*	Requirements (<i>Prasyarat</i>)	Programming Algorithm		
Lecture (Dosen pengampu)	Muhammad Hasan Sidiq Kurniawan, S.Si., M.Sc.	Semester/ Academic year (Semester/ Tahun Akademik)	Odd Semester 2020/2021		

^{*)} cross the unnecessary ones

2a. PROGRAM LEARNING OUTCOME (CAPAIAN PEMBELAJARAN LULUSAN)			
LO Code (Kode CPL)	ode (Kode CPL) LO Description (Rumusan CPL)		
ККа	Able to conduct experimental design, data collection and generation (in the form of surveys, experiments, or simulations), data organizing, data analysis using statistical techniques, and drawing valid conclusions, by utilizing at least one statistical software.		
KUi	Capable of documenting, storing, securing, and recovering data to ensure validity and prevent plagiarism.		

2b. CO	2b. COURSE OUTCOME (CAPAIAN PEMBELAJARAN MATA KULIAH)							
Suppor ted PLO Code (Kode CPL yang didu- kung)	CO Code (Kode CPMK	CO Descriptions and Indicators (Rumusan CPMK dan Indikator)	Learning Experience (Pengalaman Pembelajaran)	Assessment (Asesmen/penilaian)	Wei ght (<i>Bo</i> - bot)			
KKa	KKa1	Students are able to do experimental design, collect data on the single server single line queue model, the single server	Students are modeling problems related to the queuing system based on case studies in	Assignment	20 %			

		double line queue model, and the double server double line queue model.	2.	everyday life. Students are interpreting the queue modeling results that have been obtained.		
	KKa2	Students are able to use statistical techniques to calculate queuing model solutions.	2.	Students are modeling and choosing queue models that match the cases at hand. Students are choosing a simulation method that suits the data conditions.	Midterm Exam	25 %
	KKa3	Students are able to create, calculate solutions, and draw valid conclusions on queuing using the software.	1.	Students are translating simulation techniques into programming languages.	Final Exam	30 %
KUi	KUi1	Students are able to document, store, secure queue model data and supplies that have been obtained.	1.	Students are creating original simulation programs based on cases in everyday life.	Assignment	25 %

4. Reference (Referensi)

1. Kallenberg, L.C.M., and Spieksma, F.M. Stochastic Modelling: Performance and Control. Universiteit Leiden.

5. Detail of Learning Activities (Rincian Aktivitas Pembelajaran)					
Sessio n (sesi)	LOC/Sub- LOC/Criterio n (CPMK/Sub- CPMK/ Kriteria)	Study Material (Bahan Kajian)	Activity Design and Duration (<i>Rancangan Aktivitas dan Durasi</i>)	Mode	Learning Media/ Reference (Media Pembelajaran/ Referensi)
1	KKa1	Basic concept of simulation	 Lecture explains an introduction about basic concept simulation (100 minutes). Students are looking for the example of simulation on daily life and explain it (50 minutes) 	FF	
2	KKa2	Queue Simulation: Arrival time and arrival rate.	 Lecture gives an example of case-study about queuing situation. (40 minutes) Students try to estimate every possible statistics that could be found in the example. (90 minutes) Lecture gives explanation about the case-study. (20 minutes) 	FF	
3	ККа3	Queue simulation: Fingerprint queuing system simulation	 Students write their arrival time on the class's fingerprint. (30 minutes) Class discussion about student's arrival time. (90 minutes) Students interpret the discussion result. (30 minutes) 	FF	
4	KKa2	Queue simulation: Single server, double server	 Lecturer explains about the basic concept of the queuing theory. (70 minutes) Lecturer gives an example about the single server queuing simulation. (40 minutes) Students analyze the given case-study using double server queuing simulation. (40 minutes) 	FF	
5	ККа3	Queue simulation: Simulation using random generator.	 Lecturer gives an example to conduct some simulations using random numbers. Students simulate using random numbers. 	FF	
6	KKa2	Monte-Carlo simulation	 Lecturer gives a brief explanation about monte-carlo simulation Case-Study. 	FF	
7	KKa2	Monte-Carlo simulation for grouped Data	 Lecturer gives a brief explanation about monte-carlo simulation Case-Study. 	FF	
8		Midterm Exam		FF	
9	KKa2	Bootstrap Simulation	Lecturer gives an explanation about bootstrap simulation.Case-Study.	FF	
10	KKa3, Kui1	Computatio n for	Lecturer gives a case-study to be solved.The students create computational program	FF	

		Bootstrap Simulation	to solve the problem using bootstrap.		
11	KKa3, Kui1	Simulation for estimating standard error	 Lecturer gives a review about standard error. The students create computational program to estimate the standard error using bootstrap. 	SAA	
12	KKa3	Hypothesis testing using simulation	 Lecturer gives a review about hypothesis testing. The students create computational program to conduct hypothesis testing using bootstrap. 	SAA	
13	KKa3	Simulation method for paired data	 Lecturer gives a review about paired data. The student's looking for the method to conduct some simulation using paired data. 	FF	
14	KKa3, Kui1	Linear Regression	 Explanantion about linear regression using bootstrap estimation. 	FF	
15		Simulation	 Case-Study 	SAA	
16		Final Examination			

Information:

For mode, enter one of the following codes

- FF = activities that require **face-to-face** meetings in class (aktivitas yang memerlukan tatap muka (TM) langsung di kelas);
- FFO = activities that require **face to face online** (aktivitas yang memerlukan tatap muka secara daring (tatap maya/TMD));
- SAA = standalone asynchronous online activity (aktivitas daring asinkron mandiri/ASM);
- CAA = collaborative asynchronous online activities (aktivitas daring asinkron kolaborasi/ASK);

Learning / reference media can be in the form of (1) self-produced results, (2) curated results: media sourced from the internet or other sources chosen by the lecturer, and / or (3) students' own exploration results.

6. Assessment and Evaluation System (Sistem Penilaian dan Evaluasi)				
Assessment System	,			
(Sistem Penilaian) Evaluation System	Each student must achieve a minimum grade / predicate of C for each CLO. If it has not fulfilled it, then			
(Sistem Evaluasi)				

Date:	Date:	Date:
Validated by	Examined by	Prepared by
(Disyahkan oleh)	(Diperiksa oleh)	(Disiapkan deh)
	N N N N N N N N N N N N N N N N N N N	<i>- 4000000000000000000000000000000000000</i>
$\langle \zeta \rangle$	THIN de	
Head of SSP-UII	Scientific Interest Coordinator	Lecture
Dr. Edy Widodo, M.Si.	Achmad Fauzan, S.Pd., M.Si.	Muhammad Hasan Sidiq K., S.Si., M.Sc.